Question	Acceptable Answers	Reject	Mark
	two montro		2
(a)(i)	two marks	$Oply (Cl^+)$ for	3
		ovidation number	
	$C_{111} C_{12} C_{13} C_{13}$		
	Goes to -1 in HCl (2)	Т	
		Only (Cl^{-}) for	
	All three correct for two marks	oxidation number	
	Any two correct for one mark	-	
	Ignore correct oxidation numbers for other	(treat each	
	elements	separately)	
	If three correct numbers given without		
	saying what species they are in max 1 for	For each incorrect	
	these two marks	oxidation number	
		change for O and H,	
		lose one mark.	
	Third mark		
	CI/CI ₂ /the same element is both oxidized		
	and reduced		
	Allow same molecule/species/ type of atom		
	is both oxidized and reduced if answer		
	elsewhere has been in terms of chlorine		
	OR		
	CI/CI ₂ /the same element both increases and		
	decreases in oxidation number		
	OR	0 to +1 described	
	Chlorine both loses and gains electrons (1)	as reduction and/or	
		0 to -1 described as	
		oxidation (for third	
		mark)	

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Equilibrium moves to the left / moves in reverse direction / moves to increase concentration of reactants(1)	Just "reverse reaction is favoured"	2
	To use up (some of) added HCI/ to react with added HCI/ to stop formation of HCI/ restores equilibrium by producing more chlorine and water (1)	Just "to counteract the change in the system" To minimise effect of HCI	
	Second mark depends on first Allow 'moves to decrease concentration of products/HCl' for both marks		

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	$CIO^{-} + 2H^{+} + 2e^{(-)} \rightarrow CI^{-} + H_2O$ ALLOW		Equations without electrons	2
	$CIO + 2H^{+} \rightarrow CI + H_2O - 2e^{C/}$	(1)		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)		
	Allow multiples			

Question	Acceptable Answers	Reject	Mark
Number			
1(b)(ii)	$CIO^{-} + 2H^{+} + 2I^{-} \rightarrow CI^{-} + H_2O + I_2$	Equations including	1
	Mark independently. No TE on 21(b)(i)		

Question Number	Acceptable Answers		Reject	Mark
1(b)(iii)	Moles thiosulfate = $(24.20 \times 0.0500 / 1000) =$ 1.21 x 10 ⁻³ /1.2 x 10 ⁻³ /0.00121/ 0.0012 (mol) Moles iodine = half moles of thiosulfate = 6.05 x 10 ⁻⁴ / 6.1 x 10 ⁻⁴ / 0.000605 / 0.00061 (mol) Correct answer without working	2 (1) (1) (2)	1.20 x 10 ⁻³ (mol) 1x 10 ⁻³ / 0.001 6.0 x 10 ⁻⁴ (mol) 6 x 10 ⁻⁴ (mol)	2

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(iv)	Moles $CIO^{-} = 6.05 \times 10^{-4}$ (mol)		1
	TE on (b)(ii) and (b)(iii):		
	If ratio CIO^- : $I_2 = 2:1$ answer is 2 x answer to (b)(iii)		
	If ratio CIO^- : $I_2 = 1:2$ answer is half of answer to (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(v)	Concentration = $(6.05 \times 10^{-4} \times 1000/25)$ = 2.42 x 10 ⁻² / 0.0242/ 0.024/ 2.4 x 10 ⁻² (mol dm ⁻³) TE. Answer to (b)(iv) x 1000÷ 25	Answers to 1 significant figure	1

Question Number	Acceptable Answers	Reject	Mark
1(b)(vi)	(Minimum) amount of I ⁻ to react with OCI ⁻ =2 x answer to (b)(iv) = 2 x 6.05 x 10^{-4} = 1 21 x 10^{-3} (mol)		2
	Allow TE for 2 x answer to (b)(iv) Ignore s.f.	"KI is in excess" if no calculation has been done.	
	Moles of I^- (9.04 x 10 ⁻³) is more than this number of moles of CIO ⁻ / I^- is in excess / KI is in excess / so that all the CIO ⁻ can react (1)		
	OR 9.04 x 10^{-3} mol I ⁻ can react with 4.52 x 10^{-3} mol OCI ⁻ (1)		
	TE from incorrect equation in (b)(ii)		
	Moles OCI ⁻ (6.05 x 10 ⁻⁴) is less than this/ I ⁻ is in excess / KI is in excess / so that all the CIO ⁻ can react (1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(vii)	0.30 x 100 / 24.2 (=1.2396694) = 1.24/ 1.2 %		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(viii)	Judgement (of colour change) at end point / adding starch too early in the titration / jet of burette not filled	Some potassium iodide did not dissolve	1
	Errors must cause an increase in titre.	Leaving funnel in burette	
	Ignore		
	Just "Human error"	Errors which affect both the students titre and an	
	Just 'overshot endpoint'	accurate titre using	
	Transfer errors / spillage	the same solutions e.g. impu solutions	
	Errors due to misreading burette / pipette		

Question Number	Acceptable Answers	Reject	Mark
1(c)	(Cl radicals) break down ozone (layer)/ ozone depletion / ozone (layer) thinning	Global warming Causes acid rain	1
	Allow damage ozone (layer)/ react with ozone		

Total = 17 marks

Question Number	Acceptable Answers	Reject	Mark
2 (a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$ (Allow atoms in H_2CO_3 in any order) Or $H_2O + CO_2 \rightarrow H^+ + HCO_3^-$ Or $H_2O + CO_2 \rightarrow 2H^+ + CO_3^{2-}$ Or H_3O^+ in place of H ⁺ <i>IGNORE STATE SYMBOLS EVEN IF INCORRECT</i>		1

Question	Acceptable Answers	Reject	Mark
Number			
2 (a) (ii)	$2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$	H ₂ CO ₃ as a product	2
	LHS (1) RHS (1)		
	OR	$H^+ + CO_3^{2-} \rightarrow HCO_3^{-}$	
	$2H_3O^+ + CO_3^{2-} \rightarrow 3H_2O + CO_2$		
	LHS (1) RHS (1)	Any other ions	
		including spectator	
	IGNORE STATE SYMBOLS, EVEN IF INCORRECT	ions (e.g. Ca^{2+} , CI^{-}) in	
	$IGNORF \Rightarrow \operatorname{arrows}$	the equation scores	
		zero	

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	dilute hydrochloric acid measuring cylinder	If collection over water is not somehow evident	2
	Conical flask and a delivery tube leaving the conical flask (1) <i>IGNORE</i> "heat" beneath conical flask Inverted measuring cylinder with collection over water shown and cylinder above mouth of delivery tube (1) <i>ALLOW</i> collection over water to be		
	shown/implied in the diagram without labels or other annotation		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	1

Question	Acceptable Answers	Reject	Mark
Indunibei			
2 (b) (iii)	$(224 \div 24000 =) 0.009333/9.333 \times 10^{-3} \text{ (mol)}$	"0.009" as answer	1
	Ignore SF except 1 SF Ignore any incorrect units		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b) (iv)	$CaCO_{3}(s) + 2HCI(aq) \rightarrow CaCI_{2}(aq) + H_{2}O(I) + CO_{2}(g/aq)$		1
	ALL FOUR state symbols must be correct for this mark		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (v)	(Mass of 1 mol CaCO ₃ = 40 + 12 + 3 x 16) = 100 g <i>ALLOW</i> just "100" <i>ALLOW</i> any incorrect units <i>ALLOW</i> "100.1 g " <i>OR</i> just "100.1" (Reason: this uses the Periodic Table value of A_r = 40.1 for Ca)		1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vi)	(Mass of $CaCO_3 = 100 \times 0.009333$) = 0.9333 (g) (1)		2
	IGNORE sig figs including 1 sf here		
	NOTE: Moles of CaCO ₃ consequential on answers to (b)(iii) and (b)(v)		
	[NOTE: if A_r = 40.1 used for Ca, then the answer = 0.9339 (g)]		
	Percentage of $CaCO_3$ in the coral = 100 x 0.9333 /1.13 = 82.6% (1)	Final % answer is not given to 3 sf	
	NOTE: If mass CaCO ₃ used is 0.93, final answer is 82.3%		
	[NOTE: if A_r = 40.1 used for Ca, then the answers = 0.9339 (g) and 82.7%]		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (vii)	(Different samples of) coral have different amounts of CaCO ₃ /different proportions of CaCO ₃ / different "levels" of CaCO ₃	Answers that do not include any mention of CaCO ₃	1
	<i>ALLOW</i> "calcium carbonate" for CaCO ₃ OR	References to solubility of CO ₂ in water	
	Only one sample of coral (was) used	References to repeating the experiment at a different temperature	

Question	Acceptable Answers	Reject	Mark
Number			
2 (a) (i)	$(COOH)_2 \rightarrow 2CO_2 + 2H^+ + 2e^-$ (1)		2
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (ii)	$5(\text{COOH})_2 + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$ ALLOW multiples	Equation with electrons left in	1
	ALLOW $5(COOH)_2 + 2MnO_4^- + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O + 10H^+$		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (iii)	Moles of $MnO_4^- = 11.30/1000 \times 0.010 = 1.13 \times 10^{-4}$ (mol) (1)	TE for 5th mark if % is greater than 100%	5
	Moles of $(COOH)_2$ in 10 cm ³ = 1.13 x 10 ⁻⁴ x 5/2 = 2.825 x 10 ⁻⁴ (mol) (1)		
	Moles of (COOH) ₂ in whole sample = 2.825 x 10 ⁻⁴ x 50 = 0.01412(5) (mol) (1)	Rounding errors once	
	Mass of acid = 0.01412(5)x 90 = 1.27 g (1)	in first 4 marks	
	% in leaves = 1.27/250 x 100 = 0.51 (%) (1)	Final answers not	
	If ratio 5 : 2 is not used, maximum (4)		
	e.g. if ratio 2:5 is used then percentage in leaves = 0.08%		

Question Number	Acceptable Answers		Reject	Mark
2 (a) (iv)	± 0.05 cm ³	(1)		2
	[(0.05 x 2) / 11.3] x 100 = 0.88%	(1)		
	ALLOW ± 0.025 cm ³	(1)		
	[(0.025 x 2) / 11.3] x 100 = 0.44%	(1)		
	ALLOW TE for second mark			

Question Number	Acceptable Answers	Reject	Mark
2 (a) (v)	Any two from:		2
	Only one titration carried out (1)	Errors in technique e.g. transfer errors	
	Leaves may contain other substances that MnO4 ⁻ could oxidize/ react with (1)		
	Not all ethanedioic acid extracted from leaves (1)		
	ALLOW temperature too low / below 60°C (1)		
	Different amounts of acid from different leaves (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR	References to weak acid	2
	rhubarb leaves are toxic /harmful (1)	Rhubarb is toxic	
	(Unnecessary because) it is (very) dilute / present in small amounts (1)		
	ALLOW because is not absorbed through the skin		
	Second mark is independent of the first		

Question Number	Acceptable Answers	Reject	Mark
2 (a) (vii)	(Cloudiness due to) MnO_2 (solid /precipitate) (1) Ignore colour of precipitate EITHER Suitable use of E^{θ} (+0.34V) OR MnO_4^- ions are a strong enough oxidizing agent to oxidize Cl ⁻ ions (1)		2

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (4s ⁰)	4s ² 3d ³	1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Octahedral		1